Year 10 : Cycle 1: Science – 100% sheet

	Section 1: Lab Equipment	Section 2: Planning an Investigation		
Mass balance	Measures the mass of an object in units called grams.	Independent variable	The variable that is altered during a scientific experiment.	
Measuring cylinder	Measures the volume of a liquid in units of ml or cm ² .	Dependent variableThe variable being tested or measured during a scientific experiment.		
Bunsen burner	A device used to heat substances by burning natural gas.	Control variable A variable that is kept the same during a scientific experiment.		
Gas syringe	A large glass syringe used to collect and measure volume of gases.	Method Step by step instructions for an investigation.		
Water bath	Used to heat and maintain samples at a constant temperature.	Results table	Left hand column = independent variable. Right hand column = dependent variable.	
	Section 3: Respiration	Section 4: Energy Stores		
Respiration	An exothermic reaction that releases energy from glucose in cells	Electrostatic energy store	Energy between two objects with a charge e.g. electrons.	
Aerobic respiration	Occurs in the mitochondria, requires oxygen. Glucose + oxygen → carbon dioxide + water	Nuclear energy store	Energy inside the nucleus of an atom.	
Anaerobic respiration in animals	Occurs in the cytoplasm when oxygen cannot be supplied fast enough e.g., during exercise. It is the incomplete oxidation of glucose. Glucose > lactic acid	Gravitational energy store	Energy due to an object's position in a gravitational field.	
Anaerobic respiration in yeast	Known as fermentation. Used in making bread and alcoholic drinks like wine. Glucose → ethanol + carbon dioxide	Elastic energy stores	An elastic object is stretched or squashed.	
		Thermal energy store	Energy in hot objects.	
	Section 5: Endothermic and Exothermic Reactions	Section 6: Photosynthesis		
Conservation of Energy	Energy is conserved in chemical reactions. The amount of energy in the universe at the end of a chemical reaction is the same as before it takes place.	Photosynthesis	An endothermic reaction in which plants take in energy to make glucose for plants. It occurs in chloroplasts in palisade cells in leaves.	
Exothermic reaction	A reaction which transfers energy to the surroundings. It causes increase in temperature of surroundings.	Word equation	Carbon dioxide + water → glucose + oxygen	
Examples	Combustion, neutralisation, oxidation and respiration. Everyday uses include hand warmers and self-heating cans.	Symbol equation	$6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$	
Endothermic reactions	A reaction where energy is taken in from the surroundings. It causes a decrease in temperature of the surroundings.	Chlorophyll	Green pigment in chloroplasts that absorbs energy from sunlight required for photosynthesis.	
Examples	Thermal decomposition and photosynthesis. Everyday uses include sports injury packs.	Uses of glucose	For respiration to release energy. Stored as insoluble starch for using later. Making other substances e.g., cellulose (for cell walls), lipids and proteins (with nitrate ions).	

	Section 7: Reaction Profiles	Section 8 Energy Pathways			
Exothermic reactions	-Energy level decreases because energy is given out to surroundingsProducts are at a lower energy than the reactantsThe difference in height represents the overall energy changeInitial rise represents the activation energy.	Mechanical	When a force acts upon an object.		
Endothermic reactions	-Energy levels increase as energy is taken in from the surroundingsProducts are at a higher energy than the reactantsThe difference in height represents the overall energy changeInitial rise represents the activation energy.	Electrical	When an electrical current flows.		
Activation energy	The minimum amount of energy that particles must have to react.	Heating	A temperature difference between objects.		
		Radiation	Sound, light and electromagnetic radiation.		
	Section 9: Limiting Factors of Photosynthesis	Section 10: Energy Efficiency			
Limiting factors	A factor that limits the rate of photosynthesis. If the factor increases, rate increases.	Conservation of energy	Energy cannot be created or destroyed – it can be transferred usefully, stored, or dissipated		
Light intensity	As light intensity increases -> rate increases (as it is the LF). Graph flattens -> rate is constant -> another factor is now the LF.	Reduce wasted energy	By insulation or lubrication of moving parts.		
CO ₂ conc.	As CO ₂ conc. increases -> rate increases (as it is the LF). Graph flattens -> rate is constant -> another factor is now the LF.	Dissipate	Some energy is wasted into the surroundings.		
Temperature	As temp increases -> rate increases (as it is the LF). Optimum temperature -> maximum rate. Beyond optimum-> rate decreases -> enzymes denatured.	Efficiency	How much energy is usefully transferred. useful output energy ÷ total input energy useful power input ÷ total power input		
Chlorophyll	May be limiting factor due to infectious disease (tobacco mosaic virus) or lack of minerals (magnesium).				
	Section 11: Exercise	Section 12: Work Done and Power			
Muscle cells	When exercising, more energy required for contraction, respire faster.	Work done	Is the same as energy transferred. Measured in Joules (J)		
Heart Rate	Increases during exercise to pump blood faster. Oxygen and glucose delivered to muscle cells faster.	Work done equation	Work done = Force x distance (J) (N) (m)		
Breathing	Breathing rate and volume of breaths increases.	Power	Rate at which energy is transferred. Measured in Watts (W)		
Anaerobic Respiration	Occurs if insufficient oxygen, lactic acid causes muscle fatigue.	Power	Power = Energy ÷ time (W) (J) (s)		
Oxygen debt	Amount of oxygen needed to react with and remove the lactic acid built up during anaerobic respiration.	equations	Power = Work done ÷ time (W) (J) (s)		
	Section 13: Changes in Energy a	and Heat Transfer			
K.E.	Kinetic energy = 0.5 x mass x velocity ²				
E.P.E.	Elastic potential energy = 0.5 x spring constant x extension ²				
G.P.E.	Gravitational potential energy = mass x gravitational field strength x change in height				
SHC	Specific heat capacity = the energy required to raise the temperature of one kilogram of a substance by one degree Celsius. Change in thermal energy = mass x SHC x temperature change				