YEAR 9 GEOGRAPHY – CYCLE 2 – NATURAL HAZARDS AND TECTONIC THEORY

BOX 1: KEYWORDS F	PART 1	high viscosity	very thick lava \rightarrow violent eruptions \rightarrow e.g. composite volcanoes
natural hazard	natural event (e.g. earthquake, volcanic eruption, tropical storm) which	low viscosity	very thin, runny lava \rightarrow less violent eruptions \rightarrow e.g. shield volcanoes
	has potential to cause damage, destruction, death	earthquake focus	point under the ground \rightarrow where an earthquake starts
earthguake	a sudden violent movement within the Earth's crust	epicenter	point on the Earth's surface \rightarrow directly above the earthquake focus
tectonic hazards	caused by movement of tectonic plates (e.g. volcanoes and earthquakes)	Richter Scale	used to decide the magnitude (power/strength) of earthquakes
weather hazards	e.g. tropical storms (hurricanes, cyclones, typhoons), drought, flood	seismic wave	waves of energy that travel through the Earth's layers \rightarrow earthquakes
hazard risk	the probability or chance that a natural hazard may occur	seismometer	equipment used to measure and record earthquakes
molten	hot, liquid and melted e.g. lava	BOX 8. TECTONIC AC	TIVITY → AT CONSTRUCTIVE PLATE MARGINS
magma	molten rock \rightarrow flowing under the ground	plate movement	two plates move away from each other
lava	molten rock \rightarrow flowing over the ground	earthquakes	earthquakes sometimes occur at constructive margins \rightarrow as two plates
BOX 2: FACTORS AFFECTING HAZARD RISK		eartiquakes	pushed apart \rightarrow pressure builds up within the rocks \rightarrow pressure
population density	high population density \rightarrow more people in area \rightarrow more people affected		released as vibrations \rightarrow which can cause small earthquakes
development level	low development→ weak buildings, less medical care→ more deaths	volcano formation	as the two plates move away from each other \rightarrow magma rises to fill the
climate change	higher temperatures \rightarrow more tropical storms \rightarrow more people affected		$gap \rightarrow forms volcano$
		volcano type	shield volcanoes
BOX 3: LAYERS OF T		//	\rightarrow wide, flat, shield shaped (formed from layers of lava)
inner core	solid \rightarrow iron and nickel \rightarrow 5000° C \rightarrow under high pressure	Volcanic Explosivity	low VEI \rightarrow not very violent eruptions \rightarrow thin runny lava (low viscosity)
outer core	liquid → iron and nickel	Index	\rightarrow lava spreads over large distances
mantle	molten rock \rightarrow 3800° C	volcano example	Mount Nyiragongo → Democratic Republic of the Congo (Africa)
crust surface layer of Earth → two types → oceanic (thin), continental (thick)		BOX 9: TECTONIC ACTIVITY -> AT DESTRUCTIVE PLATE MARGINS	
BOX 4: TYPES OF CRU		plate movement	two plates move towards each other \rightarrow oceanic crust is subducted (sinks
continental crust	thick (20-200 km) \rightarrow less dense \rightarrow e.g. granite \rightarrow old (3.8 billion years)	plate movement	underneath) under the continental crust
oceanic crust	thin (5-10 km) \rightarrow more dense \rightarrow e.g. basalt \rightarrow young (200 million years)	earthquakes	pressure and friction builds between the plates (as the oceanic plate is
BOX 5: TECTONIC PLATE MARGINS		curtinquaries	subducted) \rightarrow eventually plates slip suddenly to new position \rightarrow sudden
tectonic plate	section/segment of crust		movement causes vibrations (seismic waves) \rightarrow felt as earthquake
plate margins	where plates meet (plate boundary)	volcano formation	oceanic plate subducted underneath continental plate \rightarrow immense
constructive margin	two plates move away from each other \rightarrow rising magma fills the gap		heat and pressure \rightarrow oceanic plate melts as it sinks and turns into
destructive margin	two plates move towards each other -> oceanic crust is subducted (sinks		magma \rightarrow magma rises to surface through cracks in continental plate
-	underneath) under the continental crust		\rightarrow forms volcano on the surface
conservative margin	two tectonic plates slide past each other	volcano type	composite volcanoes
BOX 6: WHY DO TECTONIC PLATES MOVE?			→ high, steep, cone shaped (formed from layers of ash)
convection	convection currents \rightarrow magma heated by core \rightarrow rises \rightarrow moves plates	Volcanic Explosivity	high VEI \rightarrow extremely violent eruptions \rightarrow thick lava (high viscosity) \rightarrow
ridge push	molten magma rises in the gap between the plates at constructive plate	Index	lava explodes into clouds of thick ash
	margins \rightarrow cools to form new land \rightarrow land pushes the plates further apart	volcano example	Mount Sakurajima → Japan (Asia)
slab pull	oceanic crust subducted at destructive plate margins → gravity causes	BOX 10: TECTONIC A	CTIVITY → AT CONSERVATIVE PLATE MARGINS
	plate to sink \rightarrow pulls the rest of plate along \rightarrow causes entire plate to move	plate movement	two tectonic plates slide past each other
BOX 7: KEYWORDS PART 2		earthquakes	pressure and friction builds between the plates as they slide past each
VEI	Volcanic Explosivity Index→ shows magnitude (strength) 1=low, 8=high		other \rightarrow eventually the plates slip suddenly to a new position \rightarrow sudden
composite	composite volcances \rightarrow cone shaped \rightarrow occur at destructive margins		movement causes vibrations (seismic waves) → felt as an earthquake
shield	shield volcances \rightarrow flat like a shield \rightarrow occur at constructive margins	volcanoes	no volcanic activity at conservative plate margins (no rising magma)
Silicia	sincia volcanoes / nacince a sincia / occur at constructive margins		

Exam Paper 1 (Living with the Physical Environment) Section A (The Challenge of Natural Hazards) Topic (Natural Hazards and Tectonic Theory)