		1MA1 I	Practice papers Set 2: P	aper 1H (R	egular) mark scheme – Version 1.0
Que	estion	Working	Answer	Mark	Notes
1.		$(7 \times 2 + 2 \times 5) \times 200 =$ 4800 4800×8	38 400 g	5	M1 for 7 × 2 or 2 × 5 or 7 × 7 or 5 × 5 or 2 × 2 M1 for '7 × 2' + '2 × 5' (or equivalent) or '7 × 7' - '5 × 5' M1(dep on first M) for '24' × 200 or '0.0024' × 2 M1 for '4800' × 8 or '0.0048' × 8 000 000 or '0.0048' × 8000 A1 for 38 400g or 38.4kg (SC B3 for any answer including digits 384)
2.	(a) (b)		13:30 Assumption and effect	M1 M1 A1 C1	90 ÷ 1.5 (= 60) 240 ÷ 60 (= 4 hours) e.g. assumed constant speed – if not constant than could arrive earlier or later Assumed no stops – if stop then will arrive later

		1MA1 P	Practice papers Set 2: Pa	per 1H (Re	egular) mark scheme – Version 1.0
Que	stion	Working	Answer	Mark	Notes
3.		$4000 - \left(\frac{10}{100} \times 4000\right) =$	3240	3	M1 for $4000 - \frac{10}{100}$ or 0.9×4000 (or equivalent)
		3600			or 3600 or 400 or 3200 or 800 seen
		$3600 - (\frac{10}{100} \times 3600)$			M1 (dep) 10 "3600" $-\frac{10}{100}$ × "3600" or "3600"× 0.9 (or
					equivalent) A1 cao
					or
					M2 for 29.04000×0.9^2
					$(M1 \text{ for } 4000 \times 0.9^3)$
					A1 cao
					[SC: B2 for an answer of £4840, with or without working]

Question Working Answer Mark Notes	
Carried Hitti	
4. M1 for $600 \div 4 (=150)$ M1 for $4500 \div "150" (=30)$ M1 for $750 \div "30$ A1 for $750 \div "30$ A1 for $750 \div "30$ M1 for $750 \div "30$ M1 for $750 \div 750 (=6)$ or $750 \div $	$\frac{1}{6}$ (=100)

		1MA1 I	Practice papers Set 2: Pa	aper 1H (R	egular) mark scheme – Version 1.0
Que	stion	Working	Answer	Mark	Notes
5.			20	3	M1 for 30 × 14 (=420) or 18×10 (=180) M1 for 30 × 14 – 18 × 10 or "420" – "180" (=240) A1 cao
6.		$0.38 \times 10^{-1}, 3800 \times 10^{-4}, \\ 0.038 \times 10^{2}, 380$	Correct order	2	M1 changing any one correctly or at least 3 in the correct order (ignoring one) or reverse order A1 for correct order (accept any form)
7.		$6 + 3 = n + 5$ OR $64 \times 8 = 32 \times 2^n$	4	2	M1 for $6 + 3 - n = 5$ (or equivalent) or $(64 \times 8) \div 2^n = 32$ (or equivalent) or 2^{6+3} (or equivalent) seen A1 cao
8.		$-3 \le y < 2.5$	-3, -2, -1, 0, 1, 2	3	M1 for dividing a list of integers by 2 or for $y \ge -3$ and/or $y < \frac{5}{2}$ seen or implied A2 for all integers correct (A1 for 5 correct with no more than one extra)

	1MA1 F	Practice papers Set 2: Pa	aper 1H (R	egular) mark scheme – Version 1.0
Question	Working	Answer	Mark	Notes
9.	HCF: The numbers must be 3n and 3m where n and m are co-prime and at most one is a multiple of 3 LCM: Factors of 36 are 1, 2, 3, 4, 6, 9, 12, 18, 36	9, 12	2	B2 cao (B1 for two numbers with HCF of 3 or LCM of 36)
10.		Vertices at (3, 2), (3, 4) and (4, 2)	3	M1 for centre (2, 0) marked M1 for all sides $\times \frac{1}{2}$ A1 cao SC B2 for correct enlargement from (2, 0), scale factor $\neq 0.5$ or for correct enlargement from (0, 2), scale factor = 0.5

		1MA1 F	Practice papers Set 2: Pa	per 1H (Re	egular) mark scheme – Version 1.0
Que	estion	Working	Answer	Mark	Notes
Que 11.	(a)			Mark 3	Notes B3 for fully correct histogram (overlay) (B2 for 3 correct blocks) (B1 for 2 correct blocks of different widths) SC: B1 for correct key, eg. 1 cm ² = 5 (cars) or correct values for (freq ÷ class interval) for at least 3 frequencies (3, 5, 3.6, 1.2)
		4 ^ 24			M1 for $\frac{3}{4} \times 24$ (= 18) (or equivalent) or $\frac{1}{4} \times 24$ (= 6) (or equivalent) A1 cao OR M1 ft histogram for 15 × "1.2" or 5 × "1.2" A1 ft

		1MA1 F	Practice papers Set 2: Pa	aper 1H (Re	egular) mark scheme – Version 1.0
Que	estion	Working	Answer	Mark	Notes
12.	(a)	$\frac{(x+4)(x-1)}{(2x-3)(x-1)}$	$\frac{x+4}{2x-3}$	3	M1 for $(x + 4)(x - 1)$ M1 for $(2x - 3)(x - 1)$ A1 cao
	(b)	$\frac{4(x-2)}{(x+2)(x-2)} + \frac{3(x+2)}{(x+2)(x-2)}$	$\frac{7x-2}{(x+2)(x-2)}$	3	M1 for denominator $(x + 2)(x - 2)$ (or equivalent) or $x^2 - 4$ M1 for $\frac{4(x-2)}{(x+2)(x-2)}$ (or equivalent) or $\frac{3(x+2)}{(x+2)(x-2)}$ (or equivalent) (NB. The denominator must be $(x + 2)(x - 2)$ or $x^2 - 4$ or another suitable common denominator) A1 for $\frac{7x-2}{(x+2)(x-2)}$ or $\frac{7x-2}{x^2-4}$ SC: If no marks awarded then award B1 for $\frac{4(x-2)}{x^2-2} + \frac{3(x+2)}{x^2-2}$ (or equivalent)
13.			75π	3	M1 for $(4 \times \pi \times 5^2) \div 2$ (or equivalent) M1 for $\pi \times 5^2$ (or equivalent) A1 for 75π (accept 235.5)

Working $\frac{3}{0} \times \frac{12}{19} + \frac{12}{20} \times \frac{8}{19}$	192 380	Mark 4	Notes
$\frac{8}{0} \times \frac{12}{19} + \frac{12}{20} \times \frac{8}{19}$		4	9 12
$\frac{8}{0} \times \frac{12}{20} + \frac{12}{20} \times \frac{8}{20} =$ $\frac{192}{400} (= 0.48)$ $R = (\frac{8}{20} \times \frac{7}{20} + \frac{12}{20} \times \frac{11}{20})$ $\frac{212}{20} (= 0.52)$			B1 for $\frac{8}{19}$ or $\frac{12}{19}$ M1 for $\frac{8}{20} \times \frac{12}{19}$ or $\frac{12}{20} \times \frac{8}{19}$ M1 for $\frac{8}{20} \times \frac{12}{19} + \frac{12}{20} \times \frac{8}{19}$ or $2 \times \frac{8}{20} \times \frac{12}{19}$ A1 for $\frac{192}{380}$ (or equivalent) With replacement M1 for $\frac{8}{20} \times \frac{12}{20}$ or $\frac{12}{20} \times \frac{8}{20}$ M1 for $\frac{8}{20} \times \frac{12}{20} + \frac{12}{20} \times \frac{8}{20}$ or $2 \times \frac{8}{20} \times \frac{12}{20}$ OR M1 for $\frac{8}{20} \times \frac{7}{20} + \frac{12}{20} \times \frac{11}{20}$
			OR
1 R	$\frac{92}{400} (= 0.48)$ $\frac{8}{20} \times \frac{7}{20} + \frac{12}{20} \times \frac{11}{20}$	$\frac{92}{400} (= 0.48)$ $\frac{8}{20} \times \frac{7}{20} + \frac{12}{20} \times \frac{11}{20}$	$\frac{92}{400} (= 0.48)$ $\frac{8}{20} \times \frac{7}{20} + \frac{12}{20} \times \frac{11}{20}$

	1MA1 I	Practice papers Set 2: Pa	nper 1H (Re	egular) mark scheme – Version 1.0
Question		Answer	Mark	Notes
15.	Working	Correct proof	4	M1 expands $(n-1)^2$ with at least three out of four terms correct or $n^2 - n - n + 1$ or $n^2 - 2n + 1$ M1 $n^2 - 1 + n^2 - n - n + 1$ or $2n^2 - 2n$ A1 2 $(n^2 - n)$ or $2n (n - 1)$ C1 (dep on M1) for conclusion $2 \times (n^2 - n)$ or $2 \times n \times (n - 1)$ is always even OR M1 factorises $n^2 - 1$ correctly $(n - 1) (n + 1)$ M1 $(n - 1)(n + 1 + n - 1)$ A1 $2n(n - 1)$ C1 (dep on M1) for conclusion $2 \times (n^2 - n)$ or $2 \times n \times (n - 1)$ is always even

		1MA1 P	ractice papers Set 2: Pa	per 1H (R	egular) mark scheme – Version 1.0
Que	estion	Working	Answer	Mark	Notes
Que 16.	estion (a)	Working $AB = AC$ (equilateral triangle) AD is common $ADC = ADB$ (= 90° given) $ADBADC\Delta \equiv \Delta$ (RHS) OR $DAC = DAB$ (since ACD $= ABD$ and $ADC = ADB$) $AB = AC$ (equilateral triangle) AD is common $ADBADC\Delta \equiv \Delta$ (SAS)			
		OR $DAC = DAB \text{ (since } ACD$ $= ABD \text{ and } ADC = ADB)$ $AD \text{ is common}$ $ACD = ABD \text{ (equilateral triangle) } ADBADC\Delta \equiv \Delta$ (AAS)			

tion			1MA1 Practice papers Set 2: Paper 1H (Regular) mark scheme – Version 1.0							
	Working	Answer	Mark	Notes						
(b)	$BD = DC$ (congruent Δ s)	Proof	2	B1 for $BD = DC$ and $BC = AB$						
	$BC = AB$ (equilateral Δ s)			B1 for justification of these statements and completion of proof						
	Hence $BD = \frac{1}{2}AB$									
(a)	$\frac{6}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}$	$\frac{6\sqrt{5}}{5}$	2	$M1 \frac{6}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}$						
				A1 cao						
(b)	$2\sqrt{5} + \sqrt{10} \sqrt{5} + 2\sqrt{20} + \sqrt{10} \sqrt{20}$	$6\sqrt{5} + 15\sqrt{2}$	4	M1 for 3 of no more than 4 correct terms of expansion, (may be shown in a table or without + signs)						
	$2\sqrt{5} + \sqrt{50} +$			$2\sqrt{5} + \sqrt{10}\sqrt{5} + 2\sqrt{20} + \sqrt{10}\sqrt{20}$ (or equivalent)						
				M1 or $\sqrt{50}$ or $\sqrt{(10\times5)}$ or $\sqrt{200}$ or $\sqrt{(20\times10)}$						
	$2\sqrt{5} + 5\sqrt{2} + 4\sqrt{5} + 10\sqrt{2}$			M1 5 $\sqrt{2}$ or $10\sqrt{2}$ or $4\sqrt{5}$						
				A1 cao						
	(a)	$BC = AB \text{ (equilateral } \Delta s)$ Hence $BD = \frac{1}{2}AB$ (a) $\frac{6}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}$ (b) $2\sqrt{5} + \sqrt{10}\sqrt{5} + 2\sqrt{20} + \sqrt{10}\sqrt{20}$ $2\sqrt{5} + \sqrt{50} + 2\sqrt{20} + \sqrt{200}$ $2\sqrt{5} + 5\sqrt{2} + \sqrt{200}$	$BC = AB \text{ (equilateral } \Delta s)$ Hence $BD = \frac{1}{2}AB$ (a) $\frac{6}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}$ $\frac{6\sqrt{5}}{5}$ (b) $2\sqrt{5} + \sqrt{10}\sqrt{5} + 2\sqrt{20} + \sqrt{10}\sqrt{20}$ $2\sqrt{5} + \sqrt{50} + 2\sqrt{20} + \sqrt{200}$ $2\sqrt{5} + 5\sqrt{2} + \sqrt{200}$	$BC = AB \text{ (equilateral } \Delta s)$ Hence $BD = \frac{1}{2}AB$ (a) $\frac{6}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}$ $\frac{6\sqrt{5}}{5} \times \frac{6\sqrt{5}}{5}$ 2 (b) $2\sqrt{5} + \sqrt{10}\sqrt{5} + 2\sqrt{20} + \sqrt{10}\sqrt{20}$ $2\sqrt{5} + \sqrt{50} + 2\sqrt{20} + \sqrt{200}$ $2\sqrt{5} + 5\sqrt{2} + \frac{6\sqrt{5}}{5} \times 6\sqrt{5$						

		1MA1 I	Practice papers Set 2: Pa	per 1H (R	egular) mark scheme – Version 1.0
Que	stion	Working	Answer	Mark	Notes
18.	(a)		Circle, centre <i>O</i> , radius 3	2	M1 for a complete circle centre (0, 0) A1 for a correct circle within guidelines
	(b)		x = 2.6, y = -1.6 or x = -1.6, y = 2.6	3	M1 for $x + y = 1$ drawn M1 (dep) ft from (a) for attempt to find coordinates for any one point of intersection with a curve or circle A1 for $x = 2.6$, $y = -1.6$ and $x = -1.6$, $y = 2.6$, all ± 0.1
19.	(a)	$P = \frac{k}{V} : 5 = \frac{k}{8} ; k = 40$	$P = \frac{40}{V}$	3	M1 for $P \propto \frac{1}{V}$ or $P = \frac{k}{V}$, k algebraic M1 for subs $P = 5$ and $V = 8$ into $P = \frac{k}{V}$ A1 for $P = \frac{40}{V}$
	(b)	$P = \frac{40}{2}$	20	1	B1 ft on k for $P = \frac{k'}{V}$
20.	(i)		(3, -1)	3	B1 cao
	(ii)		(1, -4)		B1 cao
	(iii)		(-3, -4)		B1 cao

	1MA1 Practice papers Set 2: Paper 1H (Regular) mark scheme – Version 1.0										
Question		Working	Answer	Mark	Notes						
21.				4	M1 for method to find gradient of AB, e.g. $\frac{6-0}{13} \left(= \frac{3}{2} \right)$						
					M1 for method to find gradient of line, e.g. $-1 \div \frac{3}{2} \left(= -\frac{2}{3} \right)$						
					M1 for method to find y intercept, e.g. $2 = -\frac{2}{3} \times 5 + c$ or $c = \frac{16}{3}$						
			3y + 2x = 16		A1						

National performance data taken from Results Plus

Qu		_				Max sco	Mean				_			
No	Spec	Paper	Session	Qu	Topic	re	% all	ALL	A *	Α	В	С	D	Е
1	1380	1F	1106	Q29	Compound measures	5	10	0.52				1.25	0.58	0.27
2				NEW	Speed	4	No data available							
3	1380	1H	1006	Q19	Compound interest	3	70	2.09	2.90	2.65	2.20	1.59	0.96	0.58
4	1MA0	1H	1411	Q14	Ratio	4	31	1.23	3.63	3.20	2.46	1.34	0.65	0.24
5	1MA0	1H	1511	Q13	Derive expressions	3	8	0.23	2.42	1.67	0.87	0.22	0.08	0.05
6	1MA0	1H	1211	Q20	Standard form	2	60	1.20	1.91	1.80	1.61	1.20	0.73	0.46
7	5MM1	1H	1211	Q18	Index laws	2	70	1.40	1.81	1.90	1.57	1.20	1.20	0.00
8	1387	5H	711	Q14	Solve inequalities	3	63	1.89	2.83	2.47	1.73	0.76		
9	5MM1	1H	1211	Q11	HCF and LCM	2	39	0.77	1.81	1.00	0.62	0.49	0.33	0.00
10	5MM1	1H	1211	Q22	Enlargement	3	52	1.56	2.81	2.42	1.70	0.57	0.00	0.00
11	1MA0	1H	1206	Q22	Histograms and grouped frequency	5	27	1.34	4.31	2.98	1.36	0.39	0.09	0.02
12	1MA0	1H	1206	Q23	Simplify algebraic expressions	6	17	1.03	4.84	2.39	0.70	0.12	0.03	0.01
13	1MA0	1H	1303	Q23	Surface area	3	17	0.50	2.05	1.21	0.68	0.33	0.12	0.03
14	5MM1	1H	1211	Q21	Selection with or without replacement	4	34	1.36	3.38	2.90	1.25	0.45	0.13	0.00
15	5MM1	1H	1306	Q23	Algebraic proof	4	20	0.79	3.00	1.30	0.36	0.04	0.00	0.00
16	1380	1H	906	Q24	Geometric proof	5	11	0.53	2.25	0.97	0.26	0.07	0.02	0.01
17	5MM1	1H	1111	Q22	Surds	6	32	1.89	5.25	3.44	1.54	0.20	0.07	0.00
18	1380	1H	1011	Q28	Graphs of circles	5	12	0.60	3.57	1.24	0.38	0.11	0.03	0.02
19	1380	1H	1011	Q26	Direct and inverse proportion	4	15	0.58	3.33	1.52	0.35	0.05	0.01	0.01
20	1MA0	1H	1411	Q25	Transformation of functions	3	6	0.17	2.01	1.15	0.39	0.09	0.03	0.01
21				NEW		4	No data available							
						80								