PHYSICS PAPER 1: Energy						
Facts: Energy stores and systems			23. Power equations	energy (J) ÷ time (s)	work done (J) ÷ time (s)	
1.System An object or a group of objects			Facts: Conservation o	Facts: Conservation of energy		
3. Kinetic energy store		In moving objects.	24. Conservation	Energy cannot be created or destroyed but it can be transferred, stored or dissipated.		
4. Thermal energy store		In hot objects. The hotter the object, the more energy in the store.				
5. Chemical		Anything that can release energy by a chemical reaction (e.g. food and fuels).	25. Efficiency	How much energy is usefully transferred. Always between 0% and 100%.		
6. Gravitational potential energy store		Any object raised above ground level.	26. Equations	Efficiency = useful energy output ÷ total energy input Efficiency = useful power output ÷ total power input		
7. Elastic		Anything that is stretched or squashed.				
8. Electrostatic		Two charges that attract or repel each other.		27. Dissipated Wasted energy transferred into the surroundings. Warms it u		
		Two magnets that attract or repel each other.	28. Reducing wasted energy	Insulation and lubrication of moving pa	brication of moving parts with oil.	
9. Magnetic		Energy released from the nucleus of an atom during nuclear reactions.				
10. Nuclear energy store		Energy released from the nucleus of an atom daming nuclear reactions.	Facts: Energy resources			
Facts: Energy pathways		29. Uses	Transport, electricity generation and heating			
11. Mechanically When a f		force does work on an object, energy is transferred mechanically.	30. 3 fossil fuels	Coal, oil and gas		
12. Electrically	When a	moving charge does work, energy is transferred electrically.	31. Renewable	Can be replaced as it is used		
,			32. Non-renewable	Cannot be replaced as it is used		
13. Heating	Energy	is transferred by heating when a hot object passes its energy to a cooler object.	33. Fossil fuels (non-renewable)	A: reliable, concentrated energy source		
14. Radiation	When v	vaves do work, energy is transferred by radiation (e.g. sound or light).		D: non-renewable, gives out carbon dioxide (global warming) A: reliable, no carbon dioxide given off		
Facts: Changes in energy equations			34. Nuclear fuel (non–renewable)	D: non-renewable, expensive setup cost, produces radioactive nuclear		
		$0.5 \times mass (kg) \times value it y^2 (m/s)$		waste, risk of meltdown		
15. Kinetic energy (J) =		0.5 x mass (kg) x velocity ² (m/s)	35. Bio-fuel	A: carbon neutral - no net carbon emissions		
16. Elastic potential energy	/ (J) =	0.5 x spring constant (N/m) x extension2 (m)	(renewable)	D: uses a lot of land, drives up food prices		
17. Gravitational potential	energy (J) =	mass (kg) x gravitational field strength (N/kg) x height (m)	36. Wind	A: no carbon dioxide given off		
•	0/ (/		(renewable)	D: unreliable, noise pollution, eyesore A: no carbon dioxide given off		
Facts: Heat transfer		37. Hydroelectric (renewable)	D: expensive setup cost, unreliable, damages habitats			
18. Specific Heat Capacity (SHC) The		ne energy required to raise the temperature of 1kg of a substance by 1°C.	38. Geothermal	A: no carbon dioxide given off, reliable		
19. Change in thermal ene	rgy Cl	nange in thermal energy (J) = mass (kg) x SHC (J/kg) x temperature change $\Delta \theta$ (°C).	(renewable)	D: geothermal energy only works in		
			39. Tidal	A: no carbon dioxide given off		
Facts: Work done and power		(renewable)	D: destroy the habitat, only works	when tides go down		
20. Work done The amount		nt of energy transferred. Measured in Joules (J).	40. Solar	A: no carbon dioxide given off		
21. Work done equation	Work don	e (J) = Force (N) x distance moved (m).	(renewable)	D: unreliable (only works when its sunny)		
			41. Wave	A: no carbon dioxide given off		
22. Power	The rate a	t which energy is transferred or rate at which work is done. Measured in Watts (W).	(renewable)	D: expensive setup cost, unreliable		

Knowledge navigator: Ele	ctricity				
Circuit symbols		Resistance			
1.Cell	Store of chemical energy $\dashv \vdash$	21.Resistance	A measure of how hard it is for electricity to flow.		
2.Battery	2 or more cells in series $- -$	22.Thermistor	Resistance decreases as temperature increases.		
3.Switch	Completes a circuit or breaks a circuit	23.LDR	Resistance decreases as light increases.		
4.Filament lamp	Lights when current flows	24. Resistance Equation	Voltage = Current X Resistance (V) (A) (Ω)		
5.Ammeter	Measure current in amps (A) -(A)-	I-V Characteristics			
6.Voltmeter	Measure potential difference in volts (V) – V–	25.Ohmic conductor	Provided the temperature remains constant, current is directly proportional to the potential difference across the resistor.		
7.Diode	Current flows in one direction	26.Filament lamp	As current increases, the resistance increases. The temperature increases as current flows.		
8.Light Emitting Diode	Emits light when current flows				
	Resistance decreases as light intensity	27.Diode	Current flows when potential difference flows forward. Very high resistance in reverse direction.		
Resistor	increases.	3 Pin Plug			
10.Fuse	Wire Melts and breaks when current is too high	28.Live	Brown. Carries potential difference from mains supply (230V).		
11.Resistor	Affects the size of current flowing	29.Neutral	Blue. Completes the circuit (0V). Green and Yellow. Safety wire: Only carries current if there is a fault (0V).		
12.Variable resistor	Allows current to be varied	30.Earth	Green and renow. Salety wire. Only carries current in there is a fault (ov).		
13.Thermistor	Resistance is dependent on temperature	31.Mains supply	Frequency 50Hz, 230V		
Circuits		Energy Transfer			
	Current is the same in all components.	32.Energy is transferred to a resistor when current flows through it and heats it up.			
	Total potential difference is shared between all the components.	33.Power	Is the energy transferred per second, measured in Watts (W)		
(A circuit with one		34.P = IV	Power = Current X Voltage		
loop)	Total resistance is the sum of each component's resistance.	35.E = Pt	Energy = Power x Time		
		$36.P = I^2 X R$	Power = (Current) ² X Resistance		
15.Parallel	Total current is the sum of each component's current.	The National Grid			
(A circuit with 2 or more loops)	Potential difference across all components is the same.	37.Distributes electricity generated in power stations around the UK			
	Total resistance is less than the resistance value of the smallest individual	38.Alternating current	Potential difference changes direction e.g. generators and mains supply provide		
-	resistor.		alternating currents.		
	Placed in series in a circuit.		Potential difference remains in one direction e.g. batteries provide direct current.		
	Placed in parallel across a component.	39.Direct current			
Electric current	Data of flow of algorization charge	40 Cham	Increases voltage and reduces current.		
10 Chargo	Rate of flow of electrical charge Charged particles experience a force in an electric field.	40.Step up transformer			
	e.g., electrons are negatively charged particles				
	Charge = Current x time	41.Step down	Decreases voltage and increase current.		
20.Charge Equation	-	transformer			
	(C) (A) (s)				

Knowledge navigator: Particle model of matter

Facts: States of matter				Facts: Internal energy			
1. States of matter	The three forms in which a substance can exist. These are solid , liquid and gas .				nergy	Total kinetic energy and potential energy of all the particles.	
2. Particles	A small piece of matter e.g. atoms, ions or molecules.				ergy	The speed of the particles. It increases with higher temperatures.	
3. Particle model	A theory that describes the arrangement , movement and energy of particles. This is used to explain the physical properties of solids, liquids and gases.				19. Potential energy How far apart the particles are which is linked to the forces betwe particles.		
	Arrangement Movement Energy/Forces		20. Specific h capacity	20. Specific heat The amount of energy needed to raise the temperature of 1kg c capacity 1°C.			
4. Solid particle model	Very close, all touching in a regular pattern.	Vibrate around a fixed position.	Low energy. Strong forces between particles.	21. Specific la heat of fu		The amount of energy needed to change 1kg of a solid into 1kg of a liquid with no change in temperature.	
5. Liquid particle model	Close, all touching but randomly arranged.	Move around each other	Moderate energy. Moderate forces between particles.			The amount of energy needed to change 1kg of a liquid into 1kg of a gas with no change in temperature.	
6. Gas particle model	Far apart, not touching, randomly arranged.	Move quickly in all directions.	High energy. Weak forces between particles.	Facts: Densit	Facts: Density of materials		
				23. Density		Mass of a substance in a given volume	
7. Solid properties	 A fixed shape and cannot flow because particles cannot move only vibrate. Cannot be compressed (squashed) because there is no space between the particles because they are close together, 				f a cube	Length x width x height	
					quation	Density $(kg/m^3 \text{ or } (g/cm^3) = mass (kg \text{ or } g) \div volume (m^3 \text{ or } cm^3)$	
8. Liquid properties	1. Flow and take the shape of their container because particles can move around.			Facts: Measuring the density of a regular object			
	2. Cannot be compressed (squashed) because there is no space between the particles because they are close together .		26. Mass		 Check top pan balance reads zero Place the object on the scale and record mass 		
9. Gas properties	 Flow and fill a container because particles move quickly in all directions. Can be compressed because there is space between the particles because they are far 		27. Volume		 Use a ruler to measure the length, width and height Multiply the 3 numbers together (length x width x height) 		
	apart.			28. Density		Once you have mass and volume, density = mass ÷ volume	
10. Change of state	When a substance changes from one state to another e.g. solid to liquid.			Facts: Measuring the density of an irregular object			
11. Melting	A solid turns into a liquid when heated. Internal energy increases. A liquid turns into a gas when heated. Internal energy increases.			29. Mass 1. Chec		heck top pan balance reads zero. lace the object on the scale and record mass.	
12. Evaporation							
13. Condensation	A gas turns into a liquid when cooled. Internal energy decreases.			30. Volume	 Fill displacement can with water to the spout. Place the can at the end of a table holding a measuring cylinder under the spout. 		
14. Freezing	A liquid turns into a solid when cooled. Internal energy decreases.			3. Gentl		ently submerge the object into can and wait for the water to pour out of the spout.	
15. Melting Point	Temperature at which a substance melts when heated or when it freezes when cooled. (ice/water = 0° C)				object.	 Measure the water collected in the measuring cylinder – this the volume of the object. Now you have mass and volume, so density = mass ÷ volume 	
16. Boiling Point	Temperature at which a substance boils when heated or when it condenses when cooled. (water/ water vapour = 100°C)			5.100			

Knowledge navigator: atomic structure

The Structure of the Atom		Alpha, Beta and Gamma Radiation				
1.Atoms	Contain protons, neutrons, and electrons	22.Alpha particles	Helium nucleus with 2 protons and 2 neutrons. Mass 4			
2.Radius of an atom	1 x 10 ⁻¹⁰ m		and charge +2. Blocked by paper, skin and 3cm+ of air.			
3.Radius of the nucleus	1 x 10 ⁻¹⁴ m	23.Beta particles	High energy electron emitted from unstable nucleus,			
4.Nucleus	Contains protons and neutrons, and makes up most of the mass of		stopped by few mm of aluminium foil.			
	an atom, positively charged	24.Gamma rays	Electromagnetic wave, stopped by several cm of lead.			
5.Proton	Found in the nucleus with a +1 charge and a mass of 1		Alpha: Smoke alarms			
6.Neutron	Found in the nucleus with a 0 charge and a mass of 1	25.Uses of radiation	Beta: Thickness control of paper, medical tracer			
7.Electron	Arranged in different energy levels around the nucleus with a -1		Gamma: Sterilising food, sterilising medical			
	charge and a mass of 0.0005		equipment, medical tracer, treat cancer			
8.Electron moves up an	By absorbing electromagnetic radiation	26.Radioactive decay	Is a random process in which unstable nuclei give out			
energy level			radiation to become stable			
9.Electron moves down an	By emitting electromagnetic radiation		Can knock electrons off atoms, damage DNA and			
energy level		27.Ionising radiation	cause cancer. (Alpha is the most ionising, beta in the			
Mass number, atomic number and isotopes			middle, gamma is the least)			
10.Atomic number (small)	= number of protons (same for each element)	28.Penetrating	How far the radiation can travel (Gamma is the most			
11.Mass number (large)	= number of protons + neutrons		penetrating, beta in the middle, alpha is the least)			
12.Number of electrons	= number of protons (for neutral atoms)	Half Life				
	An atom of the same element with the same number of protons	29.Background radiation	Radiation given out by natural and man-made sources			
13.Isotopes	(atomic number stays the same) but different number of neutrons		that is around us all the time in the background			
	(mass number changes)	30.Origins of background radiation	Cosmic rays from the sun and stars, rocks, hospitals,			
14.Positive ion	Atom that has lost an electron (or electrons)		nuclear power stations and food and drink			
15.Negative ion	Atom that has gained an electron (or electrons)	31.Activity (Bq)	Amount of radiation emitted by a radioactive source			
Development of the Atom			each second in counts per second or Becquerels (Bq)			
16.Democritus	Solid sphere model - Atoms are tiny spheres	32.Half-life	Time it takes for the activity of radioactive nuclei to			
17.JJ Thomson – 1897	Discovered the electron, a negatively charged particle, and		half			
	invented plum pudding model of the atom.	33.Contamination	Unwanted presence of radioactive atoms inside an			
18.Plum pudding model – JJ	Electrons randomly scattered like the plums in a plum pudding.		object or person.			
Thomson – 1904	Positive charges spread throughout the atom.	4.Irradiation Process of exposing an object to nuclear radiation				
19.Geiger and Marsden –	Directed beam of alpha particles (He ²⁺) at a thin sheet of gold foil.	Nuclear Equations				
1909 – Alpha particle	Found some travelled through, some were deflected, some	35.Alpha	Mass number decreases by 4 4 2 CC			
Experiment	bounced back.					
20.Rutherford – 1911	Used evidence that alpha particles deflected to suggest existence	36.Beta	Mass number stays the same ⁰ R			
	of a very small positively charged nucleus and that most of the		Proton number increases by 1 -1^{β}			
	atom was empty space	37.Gamma	The atom is not changed by gamma radiation. $~^{\circ}$ V $~$			
21.Niels Bohr - 1913	Modern model - electrons orbit the nucleus as specific distances		Only the energy of the atom changes.			
(Bohr model)	from the nucleus					
James Chadwick - 1932	Discovered the neutron inside the nucleus.					