Exam Ready: Higher Knowledge

ALGEBRA INSTRUCTIONS		
Solve	Find the value of an unknown or variable	
Iterate	Repeatedly carry out a process	
Rearrange	Changing the subject of a formula	
Evaluate	In maths, this means find the value of	
Form	To write or produce	
Expand	Multiply terms inside a bracket by those outside the bracket	
Factorise	Reverse of expand, write using brackets	

INDEX LAWS: MULTIPLICATION AND DIVISION

Multiplying	Add the powers E.g. $a^m \times a^n = a^{m+n}$	
Dividing	Subtract powers E.g. $a^m \div a^n = a^{m-n}$	
Raising	Multiply powers E.g. $(a^m)^n = a^{mn}$	
P ⁰	Anything to the power of 0 is ${f 1}$	
p1	Anything to the power of 1 is itself	
Negative indices	Reciprocal <i>E.g.</i> $a^{-m} = \frac{1}{a^m}$	
Fractional indices	Root E.g. $a^{\frac{1}{n}} = \sqrt[n]{a}$ The power $\frac{1}{2}$ = square root The power $\frac{1}{3}$ = cube root	

LINEAR GRAPHS		
y = mx + c	m is the gradient and c is the y-intercept	
Gradient	How steep a line is. Can be positive or negative <u>(Change in y)</u> (Change in x)	
y- intercept	Where the line crosses the y-axis	
Parallel lines	Lines with the same gradient (same 'm')	
Perpendicular lines	The product of the two gradients is always -1, use the negative reciprocal	

PROBABILITY NOTATION	
P(A) =	Probability of an event A
P(A') =	Complement: event A will not occur
P(A ∩ B) =	Intersection: both events A and B will occur
P(A ∪ B) =	Union: event A or B or both will occur

PROPORTION		
Direct Proportion	y ∝ x Equation of the form y=kx	
Inverse proportion	$\mathbf{y} \propto \frac{1}{x}$ Equation of the form $\mathbf{y} = \frac{k}{x}$	

SIMILARITY

Length scale factor: xArea scale factor: x^2 Volume scale factor: x^3

HISTOGRAMS	
Histogram	Frequency = Area of the bars (No gaps)
Frequency density	The heights of the bars on a histogram $Frequency \ Density = rac{frequency}{class \ width}$

COMPARING DATA

Comparing	Compare averages to say who is better /faster
Data	Compare ranges (IQR) to say who is more consistent

REAL LIFE GRAPHS

Distance- Time Graphs	The gradient of the line is the speed	
Velocity- Time Graphs	The gradient of the line is The area under the graph	
Gradient of a Curve	Find the gradient of the ta point	ngent at that
Area under a curve	To estimate the area under a curve, split it up into rectangles, triangles and trapeziums	

CIRCLE THEOREMSThe angle in a semicircle is 90°Angles in the same segment are equalAngles in the same segment are equalThe angle subtended at the centre of
a circle is twice the angle subtended
at the circumferenceOpposite angles in a cyclic
quadrilateral add to 180°Alternate segment theorem: Angles in
alternate segments are equalAt angent meets a radius at 90°Tangents from an external point are
equal in length

Exam Ready: Higher Formulae

ANGLES IN POLYGONS: FACTS

Sum of interior angles	(n – 2) x 180° Where n is the number of sides
Sum of exterior angles	360°
-	

AREA

Area of a rectangle	A = bh Area = base x height	base
Area of a triangle	$A = \frac{bh}{2}$ Area = base x height 2	base
Area of a parallelogram	A = bh Area = base x height	base
Area of a trapezium	$A = \frac{1}{2}(a+b)h$ Area = half the sum of the parallel sides, multiplied by the distance between them	a h b
Area of a circle	$A = \pi r^2$ Area = pi x radius ²	(r
Area of a sector	$A = \frac{\theta}{360} \pi r^2$ Area = the fraction of the full circle x pi x radius ²	

CIRCUMFERENCE		
Circumference of a circle	Circumference = pi x diameter $C = \pi d$ OR $C = 2\pi r$	d
Arc length	Arc length = the fraction of the full circle x pi x diameter $L = \frac{\theta}{360} \pi d OR$ $L = \frac{\theta}{360} 2\pi r$	

VOLUME	
Prism	Volume = area of cross section x length
Pyramid	Volume = $\frac{1}{3}$ x base area x length

SOLVING QUADRATIC EQUATIONS

The quadratic	
formula	

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Pythagoras's Theorem Pythagoras' $a^2 + b^2 = c^2$

Theorem

TRIGONOMETRIC RATIOS

Sin	$sin\theta = \frac{opposite}{hypotenuse}$
Cos	$cos\theta = \frac{adjacent}{hypotenuse}$
Tan	$tan\theta = \frac{opposite}{adjacent}$

EXACT TRIG VALUES

		0 °	30°	45°	60°	90 °
	sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
0	cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\overline{1}}{2}$	0
	tan	0	$\frac{\overline{1}}{\sqrt{3}}$	1	$\sqrt{3}$	

TRIGONOMETRIC RULES

Sine rule	Use with non right angled triangles			
Sine Rule (for an angle)		$=\frac{SinB}{b}$	$=\frac{SinC}{c}$	
Sine Rule (for a side)	$\frac{a}{SinA}$	$=\frac{b}{SinB}$	$=\frac{c}{SinC}$	
Cosine rule	Use with non right angled triangles. Use when the question involves 3 sides and 1 angle			
Cosine Rule (for a side)	$a^2 = b^2 + c^2 - 2bcCosA$			
Cosine Rule (for an angle)	$CosA = \frac{b^2 + c^2 - a^2}{2bc}$			
Area of a triangle (trig)	Area :	$=\frac{1}{2}abS$	inC	

COMPOUND UNITS

Speed formula	Speed = Distance ÷ Time Distance = Speed × Time Time = Distance ÷ Speed	D S x T
Density formula	Density = Mass ÷ Volume Mass = Density × Volume Volume = Mass ÷ Density	M D x V