Rates of reaction

Factors affecting the ra	ate of a reaction	Measuring rates of re	action
Rate of reaction	The rate of a chemical reaction is how fast the reactants are	Calculation	Rate of reaction (g/s) = <u>amount of reactant used or product formed (g)</u>
	changed into products.		Time taken (s)
Successful collisions	Collisions between particles that result in them reacting together.	Precipitation	Disappearing cross practical - time it takes a clear solution to go cloudy.
Activation energy	The amount of energy with which particles must collide in order for	Change in mass	Use a balance to measure mass at start and end of reaction.
	the collision to be successful .		
Temperature	Increased temperature = increased rate of reaction	Volume of gas	Use a gas syringe to collect and measure gas released.
	At a higher temperature there is a larger kinetic energy store so	Reversible Reactions	
	particles move faster. This means there are more frequent	Reversible reaction	A reversible reaction is one where the products of the reaction can themselves react to
	successful collisions.		produce the original reactants.
Concentration	Increased concentration = increased rate of reaction		A 💠 B ⇒ C 🔶 D
	In a more concentrated solution there are more reacting particles		
	in the same volume. This means there are more frequent successful		If a reversible reaction is exothermic in one direction, it is endothermic in the opposite
	collisions.	Energy in reversible	direction. The same amount of energy is transferred in each case.
Pressure (gases only)	Increased pressure = increased rate of reaction	reactions	
	Particles are closer together . This means there are more frequent	Faulika ina	W/here the ferrored and reverse resetions secure to use the the series rate
	successful collisions.	Equilibrium	When the forward and reverse reactions occur at exactly the same rate.
Surface Area	Increased surface area = increased rate of reaction		
	Smaller pieces of material have a larger surface area	Le Chateliers	If a system is at equilibrium and a change is made to any of the conditions, then the
	More reacting particles are exposed to collisions. This means there	Principle (HT)	system responds to counteract the change .
	are more frequent successful collisions	Effect of	If the concentration of a reactant is increased , more products will be formed until
Catalyst	Catalysts are chemicals added to the reaction which lower the	concentration (HT)	equilibrium is reached again. If the concentration of a product is decreased , more reactants
	activation energy.		will react until equilibrium is reached again.
	Th	Effect of Increased	The amount of products at equilibrium increases for an endothermic reaction and the
	Energy Activation Energy without catalyst	temperature (HT)	amount of products at equilibrium decreases for an exothermic reaction.
	Activation Energy with catalyst		
	Reactants	Effect of decreased	The amount of products at equilibrium decreases for an endothermic reaction and the
		temperature (HT)	amount of products at equilibrium increases for an exothermic reaction.
	Destude		
	Products	Effect of pressure	An increase in pressure causes the equilibrium position to shift towards the side with the
	Programs of maction	(HT)	least molecules and a decrease in pressure causes the equilibrium position to shift towards
	Progress of reaction	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	the side with the most molecules .

Organic chemistry

Crude Oil				Cracking			
Crude oil	Mixture of different length hydrocarbon chains		Cracking A process used to break large hydrocarbon molecules into smaller more us hydrocarbon molecules		k large hydrocarbon molecules into smaller more useful		
Hydrocarbon	A molecule made up of hydrogen and carbon only				es		
Fractional distillation	A process used to separate crude oil into fractions that contain the same number of carbon atoms.		Steam Cracking	Heat the long chain HC to vaporise it and mix with steam and heat to very high temperatures			
	1. Crude oil is heated to 350 degrees		Catalytic cracking	acking Heat the long HC chain to vaporise it and pass over a catalyst e.g. aluminium o			
	2. Crude oil evapora	-	aar abaina	Products of cracking	Cracking produces a smaller alkane and an alkene		
sink to the bott		el to the top of the column longer chains tom nains will condense at their boiling points		Alkane	A hydrocarbon with single bonds between the carbon atoms. Crude oil is made u alkanes		
	Fraction	Use		Alkene Is a hydrocarbon with a		at least one double bond between the carbon atoms	
Cas		Cooking	She int inc	Alkanes		Alkenes	
Gas		Cooking Shc ins	General Formulae CnH2n+2		General Formulae CnH2n		
Petrol Naphtha		Cars Chemicals		Test: Bromine water remains orange when tested with a alkane		Test: Bromine water goes from orange to colourless when tested with a alkene	
Kerosene		Aircraft		Methane CH₄		-	
Diesel		Larger vehicles	•	Ethane C_2H_6		Ethene C₂H₄	
Lubricating oil		Oils, waxes and polishes		Propane C₃H₅		Propene C ₃ H ₆	
Fuel oil	Fuel oil Fuel for ships Long chains		Long chains	Butane C₄H₁₀		Butene C₄H₅	
Long hydrod	carbon molecules	Small hydrocarbon me	olecules	Polymers			
Difficult to ignite Eas		Easy to ignite		A polymer is a really long chain that is made from small repeating units joined together called monomers.			
Difficult to pour (viscous)		Easy to pour					
High melting point		Low melting point		Lots of Alkene molecules (monomers) open their double bonds and join together to form a really long chain. Lots of Butene molecules Polybutene			
Not as much demand		More in demand (more useful)					
				4			

Energy changes

				Energy changes		
Crude Oil				Cracking		
Crude oil	Mixture of different length hydrocarbon chains		Cracking	A process used to break large hydrocarbon molecules into smaller more useful		
Hydrocarbon	A molecule made up of hydrogen and carbon only			hydrocarbon molecules		
	A process used to separate crude oil into fractions that contain the same number of carbon atoms.		Steam Cracking	Heat the long chain HC to vaporise it and mix with steam and heat to very high temperatures		
	1. Crude oil is heated to 350 degrees		Catalytic cracking	Heat the long HC chain to vaporise it and pass over a catalyst e.g. aluminium oxide		
	2. Crude oil evaporates and vaporises			Products of cracking	Cracking produces a smaller alkane and an alkene	
	3. Short chains travel to the top of the column longer chains sink to the bottom		Alkane	A hydrocarbon with single bonds between the carbon atoms. Crude oil is made up c alkanes		
	4. Different length cha	ferent length chains will condense at their boiling points		Alkene	Is a hydrocarbon with a	t least one double bond between the carbon atoms
Gas	Taction	Cooking	Short chains	Alkanes		Alkenes
				General Formulae	e CnH2n+2	General Formulae CnH2n
Petrol		Cars	📕	Test: Bromine water remains o	range when tested with	Test: Bromine water goes from orange to colourless whe
Naphtha		Chemicals		a alkane	-	tested with a alkene
Kerosene		Aircraft		Methane CH₄		-
Diesel		Larger vehicles	♥_	Ethane C_2H_6		Ethene C₂H₄
Lubricating oil Oils, waxes and polishes		•	Propane C₃H₅		Propene C ₃ H ₆	
Eucloil						
Long nyard	ocarbon molecules	Small hydrocarbon	molecules	Polymers		
Difficult to ignite Easy to ignite		A polymer is a really long chain that is made from small repeating units joined together called monomers.				
Difficult to pour (viscous) Easy to pour						
		Lots of Alkene molecules (monomers) open their double bonds and join together to form a really long chain. Lots of Butene molecules Polybutene				
Not as much demand More in demand (more useful)						
				1		

Chemical analysis Paper Chromatography Method

Purity and Formulations		Paper Chr	omatography Method	
Pure substance Formulations	Only contains one element or compound Not mixed with anything else Tested for using melting point or boiling point . A pure substance melts / boils at a specific temperature. A useful mixture with a precise purpose	Step 1	Pencil line drawn 1 cm from the bottom of the chromatography paper (pencil is insoluble so will not travel up the chromatography paper)	
Chromatography		Step 2	Spot of ink on pencil line and allow to dry	
Chromatography	Used to separate and identify components of mixtures e.g. ink, paints, dyes and food colouring			
Rf value	Distance travelled by substance Distance travelled by solvent		Denor placed into backer a containing a	
Mobile phase	Where the molecules can move, e.g. the solvent The more time spent in the mobile phase the higher the spot moves up the paper	Step 3	Paper placed into beaker containing a solvent, e.g. water A lid prevents solvent evaporation	chromatography paper beaker pencil line (samples started here)
Stationary phase Gas Tests	Where the molecules cannot move or a			solvent
Oxygen, O ₂ Chlorine, Cl ₂	Relights a glowing splint Bleaches damp litmus paper	Step 4	Solvent rises taking the ink with it	Rf Value
Hydrogen, H ₂	Insert a lit splint into the gas Makes a " squeaky pop " sound		More soluble compounds are carried further up the paper, so the compounds spread out	distance travelled by the solvent
Carbon dioxide, CO ₂	Bubble gas through limewater (calcium hydroxide in water) Turns cloudy			X A B C D

Atmosphere

1. Early Atmosphere		4. Greenhouse Effect			
Early atmosphere How it changed		Greenhouse gases are carbon dioxide, methane, and water vapour.			
Formed by volcanoes	Water vapour condensed as Earth	Greenhouse gases trap heat so the temperature on Earth is high enough to live on.			
	cooled	1. Sun emits short wave radiation that passes through the atmosphere.			
		1. Radiation reflected as long wave from the Earth's surface.			
Large volumes of carbon dioxide and war vapour	ter Carbon dioxide dissolved in oceans	1. Long wave radiation absorbed by greenhouse gases and radiated in all directions.			
	Carbon dioxide is locked up in sedimentary rocks	 Long wave radiation is thermal radiation, so results in warming of the Earth's surface. This is th greenhouse effect. Climate Change 			
Very little oxygen	Algae and plants photosynthesise increasing oxygen volumes				
		Increasing the volumes of greenhouse gases affects the Earth's climate.			
		Average temperatures are increasing as human activity releases greenhouse gases.			
Small volumes ammonia and methane	Nitrogen released as ammonia reacts	Burning fossil fuels	Release carbon dioxide and sulphur dioxide		
	with oxygen		Carbon dioxide is a greenhouse gas		
		Deforestation	Cutting down trees means less carbon dioxide is		
2. Atmosphere today			removed due to photosynthesis		
		Agriculture	Farm animals and rice fields produce methane		
The same for 200 million years		6. Effects of pollution			
Gas	Percentage (%)	Polar ice caps melt	Increased sea levels, loss of habitat and coastal		
Nitrogen	78	Deinfell Israels alson as	erosion		
Oxygen	21	Rainfall levels change	Causes floods and droughts which impact food production		
Argon	0.9	1	Storms are more severe		
Carbon dioxide and others	0.04	Temperature change	Affect wild species of animals and plants		
3. Carbon Footprint		Other gases are released when fossil f	fuels are hurnt:		
A measure of the amount of carbon diox product	ide released over the lifetime of the	Sulphur dioxide	Causes acid rain, damages plants, buildings, and turns lakes acidic		
		Carbon monoxide	Toxic odourless gas, binds to haemoglobin		
Reduce carbon emissions by using renew carbon dioxide	vable energy or taxing those who produce	Carbon particulates (soot)	Causes global dimming		
		Nitrogen oxides	Causes respiratory problems and acid rain		