CHEMISTRY PAPER 1: Atomic structure and the periodic table

Facts: Atoms, elements, compounds and mixtures				20. Niels Bohr (1913)		Nuclear model: Calculations suggested electrons orbit at set distances.	
1.Atom	The smallest particle that makes		21. Chadwick (1932)		Nuclear model: Discovery of neutrons in the nucleus.		
2. Atom radius	The radius (r) of an atom is abou		Facts: Modern Periodic Table				
3. Subatomic	Particles that are smaller than an atom. Atoms are made of three subatomic particles			22. Arrangement		Elements are arranged in order of atomic number .	
particles 4. Nucleus	1. Protons 2.Neutrons 3.Electrons Central part of an atom. It has a radius less than 1/10,000 of that of the atom (1x10 ⁻¹⁰ m).			23. Groups		Vertical columns. Elements in the same group have the same number of electrons in their outer shell. So elements in the same group have similar chemical properties.	
5. Proton	Relative mass of 1.	Relative charge of +1.	Found in the nucleus.	24. Periods		Horizontal rows. Elements in the same period have the same number of electron shells e.g. period 3 = 3 electron shells.	
6. Neutron	Relative mass of 1.	Relative charge of 0.	Found in the nucleus.				
7. Electron	Relative mass of almost 0. Relative charge of 0. Found in the hucleds.			25. Metals		On the left and in the centre of the periodic table. They lose electrons and form + ions. High melting and boiling points and good conductors of electricity/heat.	
8. Electronic configuration	The arrangement of electrons in shells (energy levels). 2.8.1 = 2 electrons in 1 st shell, 8 electrons in 2 nd shell, 1 in 3 rd shell.			26. Non-metals		On the right of the periodic table. They gain electrons and form - ions. Low melting and boiling points and poor conductors of electricity/heat.	
9. Filling shells	1^{st} shell holds 2 electrons. 2^{nd} ar	nd 3 rd shell hold 8 electron max. I	Inner shells filled first.	Facts: Group 0 – Noble gases			
10. Mass number	The number of protons and neutrons in the nucleus .			27. Structure	Siı	ingle atoms with full outer shell of electrons. Elements include: Helium (He), Argon (Ar).	
11. Atomic	The number of protons in the nucleus. Atoms of different elements have different			28. Unreactive	Al	lso called inert due to full electron shells .	
number	numbers of protons and therefore atomic numbers . E.g. Carbon = 6 and Oxygen = 8.		29. Boiling Point	Increase down the group because the atoms get larger in size.			
12. Overall charge	Atoms are neutral (0 charge) because the number of electrons = the number of protons so the positive charge of the protons cancels out the negative charge of the electrons.			Facts: Group 1 – Alkali metals			
13. Element	A substance made up of only one type of atom . Represented by a single capital letter.			30. Structure	One electron in the outer shell. Elements include: Lithium (Li), Sodium (Na), and Potassium (K).		
14. Isotopes	Forms of an element that have the same number of protons (atomic number) but		31. Reactions		t with metals to form ionic compounds. They gain one electron to become a -1 ion.		
15. Compounds	different numbers of neutrons (mass number).		32. Properties	Low density (float). React violently with water to form metal hydroxide (alkaline sol			
16. Mixtures	 Two or more elements chemically bonded together e.g. calcium carbonate, CaCO₃. Two or more elements or compounds NOT chemically bonded. They can be separated by the physical processes of filtration, evaporation, distillation and chromatography. 			33. Reactivity	Increases down the group because more electron shells \rightarrow more shielding \rightarrow less attract from nucleus \rightarrow easier to lose one electron.		
Facts: Development of the model of the atom			Facts: Group 7 – Halogens				
17. John Dalton (1803				34. Structure	They have seven electron in their outer shell so form diatomic molecules e.g.F ₂ , Cl_2 , Br_2 .		
•	Solid sphere model: Atoms were tiny spheres that could not be divided. B. JJ Thompson (1904) Plum pudding model: Discovery of the electron led to the idea that the atom was a ball of + charge with negative electrons throughout.		35. Reactions	Read	ct with non-metals to form ionic compounds. They gain one electron to become a -1 ion.		
•			36. Properties	Boiling and melting points increase down the group.			
19. Rutherford (1911)	1911) Nuclear model: The alpha particle scattering experiment showed that the mass of the atom was concentrated in the centre and that the nucleus which was positive.			37. Reactivity		creases down the group because more electron shells \rightarrow more shielding \rightarrow less raction from nucleus \rightarrow harder to gain one more electron.	

CHEMISTRY PAPER 1: Bonding structure and properties of matter

Facts: Ionic bonding			18. High melting +					
1. Ionic bonding	Compound	npounds formed when metals react with non-metals by transferring electrons .		strong metallic bond between the delocalised electrons and the + metal ion.				
2. Atoms	Atoms are neutral (0 charge) because the number of electrons = the number of protons so the positive charge of the protons cancels out the negative charge of the electrons.		19. Good conductors	Metals conduct heat and electricity because they have delocalised electrons move through the whole structure .				
3. lons + or -	Charged particles formed when atoms lose or gain electrons to get a full outer shell.			Metals can be bent and shaped without breaking because their atoms are arranged in layers that can slide over each other.				
4. Metals	Lose electi	rons and become positive ions.	21. Alloys	Metals are too soft for many uses so they are mixed with other metals to make alloys.				
5. Group 1	Metals wit	h 1 electron in their outer shell. So lose 1 electron to become +1 ions.	22. Alloy	22. Alloys are hard because the different sized metal atoms distort/change the layers				
6. Group 2	Metals wit	h 2 electrons in their outer shell. So lose 2 electrons to become +2 ions.	properties	they are	they are not able to slide over each other.			
7. Non-metals	Gain elect	rons and become negative ions.	Facts: Covalent bonding					
8. Group 6	Non-metal	s that gain 2 electrons to become -2 ions .	23. Covalent bonding	onding Bonds formed when non-metal atoms react together and share a pair electr				
9. Group 7	Non-metal	s that gain 1 electron to become -1 ions .	24. Hydrogen H ₂		25. Chlorine Cl ₂	26. Ammonia NH ₃		
10. Ionic bond	10. Ionic bond The force of electrostatic attraction between oppositely charged ions e.g. [Na] ⁺ and [Cl] ⁻							
	$\left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$			H-H H H H Structure Dot and cross diagram Structure Dot and cross diagram Structure Structure formed from a few atoms)				
				27. Intermolecular forces The forces between molecules . Shown by a dashed line				
Facts: Ionic compo	unds							
11. lonic compound			28. Low melting + boiling point	A small amount of heat energy (low temp) is weak intermolecular forces so they are liqui				
12. High melting + boiling points	elting + A large amount of heat energy (high temp) is needed to overcome (break) the strong		29. Conducting electr		Cannot conduct electricity because they do not have delocalised electrons that can move or no overall electric charge .			
13. Conducting An ionic compound cannot conduct electricity when solid because the ions are not mobile		Facts: Giant covalent structures (large molecules formed from many atoms)						
electricity (free to move). The compound must be melted or dissolved in water.		30. High melting and boiling points		A large amount of heat energy (high temp) is needed to overcome (break) the many strong covalent honds				
Facts: Metallic bonding		31. Diamond	many strong covalent bonds. Made from carbon. Each carbon atom is bonded to 4 other carbon atoms by					
14. Metals		Giant structures of atoms arranged in a lattice.		strong covalent bonds. Does not conduct electricity as there are no delocalised				
15. Delocalised electrons		ns Electrons that have left their outer-shell and are free to move around.		electrons to carry charge through the whole structure.				
16. + metal ion		The ion formed when a metal atom loses an electron.		Made from carbon. Each carbon is bonded to 3 other carbon atoms. The atoms form a hexagonal layered structure. There are delocalised electro				
17. Metallic bond		The electrostatic force between the delocalised electrons and the + metal ion.		between the layers so graphite can conduct electricity.				

CHEMISTRY PAPER 1: Quantitative chemistry

Facts: Compounds				13. Example: Calcula		The M_r of H_2O is 18. So,		0.11 x 100 = 11. 11%		
1. Compounds	Two or more elements chemically bonded together.			of hydrogen in of water, H ₂ O . 18						
2. Compound	Show the number of elements and the number of atoms in the compound. E.g.CaCO ₃			Facts: Mass changes when there is a gas in the reaction						
formulas	has 3 elements , calcium, carbon and oxygen and 5 atoms, 1 calcium, 1 carbon, 3 oxygen			14.Closed systems	A test tube with a bung on. Nothing can enter or leave, mass of reactants=mass of products					
3. Equations	-	esium + oxygen \rightarrow magnesium oxide g + O ₂ \rightarrow 2MgO			15. Non enclosed systems	A test tube without a bung . Substances (like gases) can enter or leave . Mass appears to increase or decrease .				
4. Reactants	Substances t	hat react together . Go before the arrow			16. Mass increase	The mass of magnesium when burnt appears to increase because oxygen gas in added . Magnesium + oxygen_(g) → magnesium oxide				
5. Products	Substances r	nade in the reaction. Go after the arrow.								
6. Arrow	Shows a read	ction is taking place and in which direction .			17.Mass decrease	The mass of the reactants decrease when calcium carbonate is added to acid because carbon dioxide is released . $CaCO_3 + 2HCI \rightarrow CaCl_2 + CO_{2(g)} + H_2O$				
7. Conservation of mass	No atoms are lost or made during a chemical reaction. Mass of products = mass of reactants.			Facts: Chemical measurements: Uncertainty						
8. Balanced	· · · ·	onservation of mass is why we have to balance symbol equ	ations (t	he	18. Uncertainty	In science there is always uncertainty when measurements are taken.				
equations		toms must be the same on both sides of the equation).		iic ii	19. How to calculate		, 0	Data set = 50		
9. Multiplier numbers	-The normal size number before a formula. -Show how many molecules of a substance there are: $\underline{2}H_2 + O_2 \rightarrow \underline{2}H_2O$. -The reaction has: 2 hydrogen molecules, 1 oxygen molecule and 1 water molecule.			uncertainty	3. Divide the rar	given as the value \pm	1. Mean = <u>50 + 51 + 49 + 50</u> = 50 4 2. Range = 51 - 49 = 2 3. 2 divided by 2 = 1			
10. Subscript	10. Subscript -The small, low number within a formula.					0	4. Uncertaint			
numbers		number of atoms of an element in a molecule $2H_2 + O_2 \rightarrow 2$ hydrogen atoms in each hydrogen molecule , 2 oxygen ator		one	Facts: Concentration					
		ecule and 2 hydrogen and 1 oxygen atom in each water mol		one	1 – Solution	A mixture formed by a solute and a solvent .				
Facts: Relative form	ula mass			<u>12</u>	2 – Solute	The dissolved substance (usually a solid) in a solution.				
11. Relative atomic r	nass (A_r)	Relative mass of an atom. The top number of each atom	າ.	C 6	3 - Solvent	The liquid (usually water) in which the solute dissolves to form a solution.				
12. Relative formula	mass (M_r)	ss (<i>M</i> _r) The relative atomic masses of all the atoms in a formula added			4 - Concentration	The mass of solute dissolved in a given volume of solvent.				
		together.	5 – Units	Grams per dm ³ (g/dm ³) or moles per dm ³ (mol/dm ³).						
13. Example: Calcula relative formula			1 H 1	<u>16</u> 0	6 - dm ³	Cubic decimetres.				
of water, H₂O.				8	7 - Conversions	1 dm ³ = 1000 cm ³ . To convert cm ³ to dm ³ \div by 1000. To convert dm ³ to cm ³ x by 1000.				
Facts: Relative form	Facts: Relative formula mass					1. Increase the mass of the dissolved solute (by dissolving more in a given volume of			5	
14. Percentage mass	4. Percentage mass The mass of one element in a compound represented as a percentage			concentration	solution). 2. Reducing the volume of solvent (adding less water).					
15. Equation	on % mass of element in a compound = (number of atoms of element) x (A_r of element) M_r of compound				10 – Equation	Concentration = <u>mass (g or mol)</u> (g/dm ³ or mol/dm ³) volume (dm ³)				

CHEMISTRY PAPER 1: Chemical changes								
Facts: Metal extracti		13. Anode +	Positive	e electrode = Oxidation Is Loss of electrons.				
1. Metal ore			14. Cathode -	Negative electrode = Reduction Is Gain of electrons.				
	to make extracting the metal worthwhile.		Facts: Electrolysis of aluminium oxide					
2. Reactivity series	A list of metals in order of how reactive they are based on their reactions with water and acid. The series is Used to determine extraction method.		15. Anode		s attracted to the anode and collected as oxygen gas. The oxygen reacts with the on electrode , forming carbon dioxide. This wears the electrodes away = replacing.			
3. Non-metals	Carbon and hydrogen are ofte	n included in the reactivity series.	16. Cathode	Al ³⁺ is attracted to the cathode and collected as aluminium metal.				
4. Extraction method potassium most reactive K sodium Na		Ŋ	Facts: Electrolysis of aqueous solution					
	calcium Ca magnesium Ca Mg Extracted using electrolysis		17. Aqueous solution (aq)		A solution that uses water to dissolve a substance e.g. an ionic compound.			
	aluminium Al carbon C zinc Zn	J	18. Cathode (-ve)		 Hydrogen is formed if the metal is more reactive than hydrogen. Metal ions are formed if the metal is less reactive than hydrogen. 			
	iron Fe tin Sn lead Pb hydrogen H copper Cu silver Ag gold Au	Extracted by heating with carbon	19. Anode (+ve)		 A halogen is formed if a halide ion e.g. F-,Cl-, Br-, I- is present. Oxygen is formed if there is no halide ion e.g. F-,Cl-, Br-, I- is present. 			
		Found in their natural state , not bonded in an ore.	Facts: Acids and alkalis					
			20. Dissociate	The	breaking up of a molecule into ions when dissolved in water .			
	platinum least reactive Pt		21. Acids	Diss	solve in water to form an aqueous solution containing hydrogen ions H ⁺ . pH 1-6.			
Facts: Heating with Carbon			22. Acid examples	Hydi	drochloric acid, HCI , nitric acid, HNO₃ and sulphuric acid, H₂SO ₄ .			
	The addition of oxygen to a substance. E.g. $2Ca + O_2 \rightarrow 2CaO$. Ca has been oxidised .		23. Alkalis	Dissolve in water to form an aqueous solution containing hydroxide ions OH ⁻ . pH 8-1				
	The removal of oxygen from a substance. E.g. $CuO + H_2 \rightarrow Cu + H_2O$. Cu has been reduced		24. Alkali examples	Mos	st metal hydroxides e.g. copper hydroxide and ammonia.			
U	iron oxide + carbon \rightarrow iron + carbon dioxide The iron is reduced and the carbon oxidised .		25. Neutral	A substance that has a pH of 7 e.g. water.				
Facts: Electrolysis	lectrolysis			Facts: Metal and acid reactions				
	A giant lattice structure of positive and negative ions held together by strong electrostatic forces.		26. Equation 1		Acid + alkali \rightarrow salt + water			
-	A process that breaks down an ionic compounds using an electrical current.		27. Equation 2		Acid + metal oxide/metal hydroxide \rightarrow salt + water			
	An ionic compound cannot conduct electricity when solid because the ions are not		28. Equation 3		Acid + metal carbonate \rightarrow salt + water + carbon dioxide			
electricity r	mobile (free to move). The compound must be melted or dissolved in water.		29. Hydrochloric		Produces a salt ending in chloride . Sodium chloride.			
	The liquid or solution formed from melting or dissolving the ionic compound that can conduct electricity because the ions are mobile (free to move).				Produces a salt ending in nitrate . Copper nitrate.			
12. Electrode	Conducts electrical current to and f	31. Sulphuric		Produces a salt ending in sulphate . Lead sulphate.				

CHEMISTRY PAPER 1: Energy changes							
Facts: Chemical reactions							
1. Chemical reaction Occurs when reacting p			cting particles collide with each other with sufficient e	energy, making a successful	collision.		
2. Conservation of energy The amount of energy		The amount of er	nergy in the universe at the end of a chemical reaction is the same as before the reaction takes place.				
3. Activation energy		The minimum an	nount of energy that particles must have to react (successful collision).				
4. Catalyst		Speeds up a cher	cal reaction without being used up. It lowers the activation energy needed for a reaction to take place.				
Facts: Exothermic react	ions			Facts: Endothermic reactions			
5. Exothermic	A reaction t	hat transfers energ	y to the surroundings.	9. Endothermic	A reactions that take in energy from the surroundings .		
6. Reactions	Combustion	n, many oxidation a	nd most neutralisation reactions.	10. Reactions	Thermal decomposition, electrolysis, photosynthesis.		
7. Uses	7. Uses Hand-warmers and self-heating cans.			11. Uses	Instant icepacks to treat sport injuries.		
8. Observations	Temperatu	re increases , a glow	<i>'</i> .	12. Observations	Temperature decrease.		
Facts: Energy level diag	rams (reaction	profiles)					
13. Energy level diagram	۱		Diagrams that shows if a reaction is exothermic or e	ndothermic. It shows the e	nergy in reactants and products.		
14. Exothermic The re		The reactants are above (have more energy) the products as energy is given out.					
15. Endothermic			The reactants are below (have less energy) the proc				
16. Energy level diagram	ו: Exothermic ו	reaction		17. Energy level diagram: Endothermic reaction			
Activation energy Energy of reactants Energy of products Direction of reaction			Image: Weight of the second				